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EVALUATION CRITERIA FOR REAL-TIME SPECIFICATION LANGUAGES

1. Introduction
This report proposes a set of evaluation criteria for languages designed to specify the

requirements of real-time systems. It is intended for a reader who is beginning a real-time
development project and considering a method or language for capturing the system's
requirements. We assume the reader is familiar with at least some real-time specification
languages and with the characteristics that distinguish real-time systems from others.
Specification languages, for the purpose of this study, include both highly formal languages
(having at least a formal syntax) as well as informal ones. We include technical criteria we
believe may be formally evaluated, such as the ability to verify timing properties; we also
include criteria of a more subjective nature, such as readability and ease of use. For each we
include a list of key questions that a developer may use to help evaluate a candidate
language.

Not surprisingly, the criteria are not unrelated, although how they affect each other
varies from case to case. For example, increasing the formality of a language may increase or
decrease the readability of the specification. A language with a strong conceptual construct
and high applicability to real-time systems probably produces a very concise specification,
which may be easier to modify, but an overly concise specification (or an overly verbose one)
may have very poor readability.

We do not provide value rankings for the criteria, because the value varies with pro-
jects. For example, ease of learning would be more important to a project staffed with
unskilled or inexperienced personnel than one with seasoned veterans; sophisticated support
tools may be irrelevant to a project without the computing resources to exploit them.

We do not at this time provide objective measurement procedures for the criteria. For
some criteria, derivation of measurements represents an obvious continuation of this work
and is beyond the scope of the current effort. For others, it isn't clear that finding an objec-
tive measure is feasible. In any case, we believe that the identification of the criteria is useful
in its own right. It should motivate the project manager to think about long-term issues and
provide a justification framework for choosing a particular language and rejecting others.

The evaluation criteria are presented in two sections. Section 2 suggests language
features that support desirable properties of the finished product-the requirements
specification. Section 3 proposes language features that facilitate the process by which the
specification is produced. A brief summary appears in Section 4. A bibliography and glos-
sary relevant to real-time system specification conclude this report.

2. Product-Oriented Criteria

The product under consideration is the requirements specification. The purpose of a
requirements specification language is to establish a syntactic and semantic context in which
to develop that product. The purpose of a requirements specification is to define all accept-
able implementations of a system and to specify any constraints on its implementation [Heit-
meyer and McLean 1983]. We take as axiomatic that a requirements specification should be
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unambiguous, complete, verifiable, consistent, easy to change, traceable, and usable during
development, operation, and maintenance [ANSI/IEEE Std 830-1984]. A specification
language must at least permit such properties in a requirements specification. It might
guarantee them (by making it impossible to produce a product without them); it might sim-
ply encourage them (by providing features designed to ease their rendering). Note that a
language that guarantees a good product need not be the best choice; it might, for instance,
be prohibitively hard to use.

In the following subsections, we suggest evaluation criteria related to the production of
high-quality requirements specifications in the context of real-time systems.

2.1. Applicability to Real-Time Systems

Since real-time systems, by definition, must respond to events under some timing con-
straints, it is imperative that the language for rendering real-time specifications be able to
express such timing requirements. The existence of a model for timing in the requirements
specification language, and the notation for expressing timing constraints is the primary issue
that sets real-time and non-real-time specification languages apart. The timing model may
be based upon either continuous or discrete time. Furthermore, soft real-time systems deal
with stochastic performance models; their requirements are written in terms of a some
minimum number of times that a real-time deadline must be met. By contrast, hard real-
time systems use deterministic models; their minimum required rate for satisfying a deadline
is 100%. Some systems, such as the Space Shuttle, combine aspects of both soft and hard
real-time: a set of primary or high-priority tasks must always meet their deadlines, whereas
it is permissible for less important tasks to fail to complete from time to time.

It is not sufficient that requirements for real-time systems express only an ordering of
events, system responses, etc.; they must also express absolute and relative time intervals
from a fixed starting point. Timing constraints should be stated only in terms of events that
are externally visible at the system level. To achieve this goal the model of the system
environment embraced by the language must be complete and well-defined.

Some specification languages suitable for real-time systems may have semantics for
parallelism, which some real-time applications may need. The semantics of parallelism in the
specification language may use either a maximal parallelism model or an interleaving model.
Maximal parallelism allows any number of events to occur simultaneously, as in the real
world. The interleaving model, on the other hand, forces simultaneous events to be sequen-
tialized artificially. Interleaving is considered inadequate by some for handling certain situa-
tions involving simultaneity in a meaningful manner [Mok 1991]. Others find that it is possi-
ble to incorporate time into an interleaving model to represent real-time adequately [Ostroff
1989].

Key questions about the applicability of the language to real-time systems, then,
include:

(1) Can the language express absolute and relative timing constraints?

(2) Is the language's model of time discrete or continuous?

(3) Can timing constraints be expressed only in terms of events observable to the system in
its operating environment?
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(4) Can the language express stochastic requirements for deadline satisfaction?

(5) Can the language express what is required to occur if a timing constraint is missed?

(6) Can the language express parallelism? Does it use the true or interleaved model of
parallelism?

2.2. T .resenting the Conceptual Construct

A major concern in representing a set of requirements is capturing the essential proper-
ties or conceptual construct [Brooks 19871 of a system while leaving unspecified those details
that do not affect validity. The specification should serve as an abstraction representing
exactly the set of all valid implementations, and neither overspecify (provide details that are
not requirements) nor underspecify (omit details that are requirements). A specification
should say what is required of the system and not how that system is implemented, i.e., it
should represent a "black box" with only the externally observable behavior specified [Parnas
19791.

A difficulty in representing the conceptual construct is that inessential artifacts of a
specification may be misconstrued as part of the conceptual construct. Such is often the case
with specifications that use operational definitions whose details may be misinterpreted as
design or implementation constraints. For example, a specification may include parallelism
as a conceptual construct, but it would be a premature design-level decision to interpret this
as requiring either a parallel system or a distributed system architecture (unless mandated as
a constraint). Also undesirable are specification languages that use design-level concepts such
as data flow models, because the specifications resulting from such techniques usually imply
that a particular component architecture is required. Even though the ideal conceptual con-
struct for a system can at best be subjectively evaluated, it is desirable that a specification
language support models and notations that minimize confusion about which constructs are
required properties (i.e., external behavior) and which are artifacts of the specification.

Legitimate design and implementation constraints, which tend to decrease the number
of potentially valid implementations by limiting choices for designers and implementors, must
be handled with care. Different notations may be appropriate for such constraints, since it is
important that true constraints not be confused with similar appearing constructs that are
only artifacts of the specification.

Families of systems arise anytime when a requirements specification leaves a choice
open to the designer or implementor. While implicit choices left to the designer or imple-
mentor give rise to families of different implementations, we emphasize explicit requirements
constructs that provide additional family concepts:

* Nondeterminism allows for different choices based upon alternate behaviors that are
equally suitable.

* Abstract input or output devices define families of systems with common functionality
but choice of hardware devices.

* Generic system parameters (analogous to those of the Ada programming language) give
rise to families of systems that differ in the values of those system parameters.

Such concepts in a specification tend to increase the number of potentially valid implementa-
tions and may make a specification reusable or more easily modified. Language support for
families of systems should be flexible enough to include the full range from narrowly defined
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single systems with many'constraints to general families of systems.

Part of a system's conceptual construct is its operating environment. Developing a
real-time system may require extensive modeling of the external environment (such as a tim-
ing model for it) in order to describe or analyze the requirements properly. For further dis-
cussion of this concern see [Heitmeyer and McLean 1983].

Key questions about capturing a system's conceptual construct, then, include:

(1) Does the language lend itself to specifying only what is required, or is it burdened by
the need to include irrelevant details or other artifacts of using that language in the
specification?

(2) Does the language facilitate the representation of program families by allowing abstrac-
tion of parameter values, hardware devices, and nondeterminism?

(3) Does the language provide for modeling the system's operating environment?

2.3. Formality

As with many of these criteria, formality is a spectrum quality rather than an absolute.
A formal specification language has at least a precise, rigorously defined syntax. That means
that it is possible to test unambiguously whether a specification is a member of the language
or not. In addition, some formal languages have precisely defined semantics. A specification
written in such a language has mathematical properties that can be analyzed. More to the
point, it can be shown that any system that meets that specification will have certain proper-
ties. For example, desired invariants can be derived for most real-time systems; an example
invariant is "the valve will always be closed within two seconds of detection of sensor tem-
perature exceeding 212 degrees." Proving that desired invariants are implied by the
specification is an indispensable exercise in making sure that the specification is valid.

Formal specifications also have the potential to be processed mechanically; for example,
a correctness proof can be checked automatically, even if the proof could not be automati-
cally derived [Liskov and Berzins 1979]. Completeness and consistency checks can be
automated because there is a formal definition of both. By contrast, natural language
specifications can be processed mechanically only at the most superficial levels, such as sim-
ply manipulating various blocks of text. However, the role of natural language commentary
should not be overlooked for clarifying the major points of a formal specification or providing
background and motivation for the decisions embodied by the formalisms.

Formal specification languages can be judged by the ease with which their specifications
can be checked for a range of properties. These properties include completeness, consistency,
lack of ambiguity, and verifiability, each of which is discussed below.

2.3.1. Completeness

A requirements specification is complete if it has all the information needed to define at
least one system that is acceptable to the customer. This also includes support for any attri-
butes that contribute to completeness, such as robustness-the ability to handle any possible
input conditions including errors.

The specification language must tolerate incompleteness in a given requirements
specification during development, although the language must also aid in detecting
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incompleteness so that it'can eventually be eliminated. Certain constructs are needed, such
as TBD's, that allow for reasonable analysis of an incomplete specification.

Key questions:

(1) Does the language include rules that define what a complete requirements specification
is?

(2) Does the language tolerate incompleteness during development?

(3) Does the language facilitate rapid identification of areas of incompleteness in the
specification?

2.3.2. Consistency

Consistency means that no contradiction can be derived from a set of facts. Incon-
sistent requirements specifications have no systems that satisfy all the requirements. A
requirements specification must be internally consistent; that is, no contradiction can be
deduced from within the specification. Specification languages should provide some form of
internal consistency checking. A requirements specification must also be externally con-
sistent with other products of development, such as the design, implementation, etc. Tracea-
bility (see Section 3.3.) can provide some support for external consistency checking.

If formal reasoning is associated with a specification language, then it is desirable that
the underlying formal logic system have been shown to be sound. That is, any theorem
derived from the specification must be true in the specification model. Although first order
predicate logic is sound, special-purpose logics need to be shown to be sound also [Berg et al.
19821. Formal reasoning is necessary to precisely define and to automate consistency check-
ing.

Key questions:

(1) Does the language contains rules from which mechanical self-consistency checks can be
derived?

(2) Does the language provide a means to perform external consistency checks with other
products of the development?

2.3.3. Lack of Ambiguity

Ambiguity in a specification leads to more than one meaning, when only one is
intended. A specification language should not have ambiguity at either the syntactic or
semantic levels. Formal syntax and formal semantics are solutions, since formal constructs
usually have unambiguous definitions. However, even the lack of ambiguity found in formal
specifications may not prevent misunderstandings, if the reader does not have the appropri-
ate background and experience in the language [Parnas 1979].

Key questions:

(1) Does the language have a formal syntax by which syntactic correctness of a
specification can be unambiguously judged?

(2) Is the language semantically ambiguous?
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2.3.4. Verifiability

The quality of verifiability refers to the ability to prove that some set of properties
holds for a given specification. The ability to verify properties of a specification is one of the
most important reasons for using formal specification languages.

Specification languages that can be verified are usually built upon some type of logic.
To make verification feasible, it must be automated. Complete automation of verification
requires a decidable language, i.e., one whose underlying logic is decidable. Decidable
languages, however, may not be able to express all desired requirements concepts that could
be expressed via an undecidable language. A compromise using some restricted subset of an
undecidable language is generally sought in order to provide the requisite expressiveness.
The ultimate goal is to provide an efficient automation of proofs, so that specifiers and
verifiers need not be experts in proof techniques.

Key questions:

(1) Does the language have a formal semantics that will allow proofs of invariant correct-
ness?

(2) Is the language based on a logic that has been shown to be decidable?

(3) What is the computational complexity of the automatic proof techniques, if any are
provided?

2.4. Constructibility, Expressiveness, and Conciseness

A language is said to be constructible if it is able to express application domain con-
cepts. A special case of constructibility for real-time systems was discussed in Section 2.1.
Other concepts may include special language constructs for vehicle position and attitude,
chemical reactions, fluid dynamics quantities, etc. The language is said to have high construc-
tibility if (1) the way the specifiers think about the problem domain is reflected in the avail-
able constructs and in the way these constructs are combined; or (2) the specification
language is expressive. Expressiveness refers to the ability to make statements about many
types of properties, and the ability to describe varied functionality. So, for example, even if
a particular language is not constructible with respect to both avionics and chemical process-
ing domains because it does not have built-in concepts specific to each one, it may still be
expressive enough so that specifiers can easily build suitable specifications for both domains
by using more general (domain-independent) built-in features of the language.

Assuming that the language is able to express a construct at all, as discussed above,
conciseness refers to its ability to express the construct with a minimum of redundant or
irrelevant information. Important features common to many real-time systems, e.g., timing
properties, should be expressible directly via a small number of primitives, rather than
indirectly in terms of many primitives.

Alternately viewed, conciseness measures the lack of repetition (either actual or concep-
tual) necessary in a document. The expressive primitives are powerful because they take the
bulk of common information from the specification and move it into the semantics of the
language. Support for some form of abbreviations (such as macros) can also aid in concise
specifications by factoring out repetitive parts of a specification. Avoiding such repetition
also promotes consistency within the specification by maintaining a single definition of a con-
cept.
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Key questions:

(1) What features of the language are specifically relevant to the problem domain under
consideration?

(2) What features of the language are relevant across application domains?

(3) To what degree must information (whether detailed requirements, conceptual back-
ground, or semantic constructs) be repeated in a specification written in the language
under consideration?

(4) How compact is the expression of information in the language under consideration,
compared to that of other languages?

2.5. Scalability

It is important that the specification language can handle scaling up from small, toy
problems to production real-time systems. A major difficulty in scalability is that the com-
plexity of large systems increases nonlinearly with the size of the system [Brooks 1987]. The
best evidence of language scalability is the existence of previous application of the language
to large production-quality real-time systems, along with documented evaluation of the
language's tool and methodology support. Lacking such a posteriori evidence, the following a
priori criteria can be used:

* The language should support vertical decomposition of a specification from the top level
(most abstract) through refinement to additional more detailed levels. Consistency must
be maintained among multiple vertical levels that comprise a specification.

* At each level of the vertical decomposition, there should be constructs for partitioning
the specification into more manageable work assignments (horizontal decomposition).

Key questions:

(1) Is there testimonial evidence of application of the language and its methodology to pro-
duction systems?

(2) Does the language support vertical or horizontal decomposition of the system?

2.6. Modifiability

Modifiability is the quality that makes a specification easy to change. Requirements for
real-time systems will likely change many times during the evolution of a project due to such
factors as changing environment and changing customer needs under complex technological,
legal, political, and social pressures [Brooks 1987]. The language must support ease of
change throughout the system's evolution.

In general, readability factors, such as indices and cross-referencing or their automated
equivalents, contribute to ease of change. Additionally, structuring to facilitate anticipated
changes may be beneficial. However, structuring criteria for modifiability may conflict with
those for readability and scalability, and require a compromise.

Key questions:

(1) Does the language support browsing facilities (hardcopy or online) that facilitate locat-
ing related sections during modification?
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(2) Does the language support the documentation of anticipated changes?

2.7. Readability

Readability is a quality that enables individuals in different roles (specifiers, customers,
users, verifiers, and implementors) to understand a specification without undue difficulty.
Each role has its own perspectives and assumptions, and requires different educational back-
grounds, knowledge, and experience. Those portions of the specification relevant to each role
should be clearly understandable to each person serving in that role.

The structure of the specification also affects readability. It is preferable that the
specification language aid in separating normal processing from error processing. Including
indices and cross-references (or online retrieval equivalents) also promotes understanding, as
well as modifiability.

Key questions:

(1) Does the language provide for the needs of readers in different roles?

(2) Can specifications be structured for readability (e.g. normal vs. error processing)?

(3) Does the language support browsing (hardcopy or online)?

3. Process-Oriented Criteria

Development of a good specification requires the basic processes of creation,
modification, and analysis. The process of creation should be supported by a method that
provides guidance to the specifier. Analysis of a specification takes two basic forms.
Verification (definition I in Glossary) and testing apply to properties such as consistency,
timing, security, and reliability that are sufficiently formal to permit objective evaluation.
Properties such as readability, maintainability, and suitability of the system to customer
needs require a subjective evaluation or validation. Modification and analysis must normally
be iterated until there is agreement with the customer that the specification is satisfactory.

At later stages of the life cycle, verification (definition 2) and testing of designs and
implementations with respect to the requirements specification will occur. Traceability, as a
complement to analysis, provides limited assurance that all requirements have been covered
both during specification development and at later stages.

For building large real-time systems, automation of these processes in terms of tools
and environment is an overriding concern, as the complexity of such systems is generally
unmanageable without tool support.

3.1. Method for Specification Creation and Modification

A requirements specification language either implies or explicitly provides a method by
which the language is used to create and modify a specification. The method may consist of
a sequence of steps (i.e., suggestions of what to do next), procedures or heuristics for execut-
ing each step, rules for evaluating the results, etc. Guidance should be in terms of when to
apply various constructs of the language, as well as how to apply these constructs effectively,
especially when there may be a choice of applicable constructs. Finally, the guidance should
not be so rigid as to encumber the creativity or productivity of the specifier ISTARTS 19871.
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Ease of use of the-method should be evaluated and considered. Ideally, the method
should require little formal training and mastery of few unfamiliar or complicated concepts.
Of course, the benefits of the method must be weighed against its start-up cost; one might be
willing to invest in a long training course if the method seemed likely to deliver significant
long-term benefits. A valuable characteristic of a method is to allow decomposition of the
specification task into small work assignments so that a team of specifiers can cooperate and
at the same time work relatively independently.

The maturity of the method, whether potential, rudimentary, or fully mature, should
be an important factor in evaluating the method associated with a specification language
[Zave 1991]. Similarly, the level of method support, ranging from no support for a "bare"
specification language to a specification language embedded in a methodology that addresses
the entire system life cycle, should also be considered. The specification method should also
be compatible with other methods used during the system life cycle.

Key questions:

(1) Is guidance or heuristics provided for creating and modifying specifications?

(2) How difficult or expensive is training in the method?

(3) Can the method support division of the specification process into independent work
assignments?

(4) How mature is the method?

(5) How does the method integrate with others in the system life cycle?

3.2. Verification and Testing

A verification technique guarantees that a specification satisfies some property for all
states of the system, in contrast to testing, which can only show the satisfaction of that pro-
perty for some states. In evaluating a specification language, one should consider which
verification and test procedures have been established, and the level of support via methods
and tools to aid in such analyses.

The primary concern is verification and testing techniques that apply directly to the
requirements specification; for example, a formal specification may lead to inexpensive
automatic test case generation. Verification or testing of designs and implementations versus
a specification will occur at later stages of system development, e.g., correctness (definition 1)
of an implementation with respect to its specification. Verification and testing techniques at
the design and implementation levels should also be factors in evaluating a specification
language.

Key questions:

(1) Which verification and test procedures are available at requirements level?

(2) Which verification and test techniques are available during later design and implemen-
tation?

3.3. Traceability

Traceability provides for relating objects at one stage of development to objects at the
next stage. Tracing between two development steps provides two major forms of compliancy
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checks: (1) coverage of the former system by the latter (each former object corresponds to
one or more latter objects) , and (2) necessity of the latter objects (each latter object
corresponds to one or more former objects).

For requirements specification there are two important forms of traceability that
should be compatible with a specification language, with traceability links both forward (link-
ing the requirements specification to another work product) and backward (linking that work
product back to the requirements specification) [Davis 1990]:

* The requirements specification language should provide a means of tracing each require-
ment to its maniestation in the design and implementation as a rudimentary form of
verification or testing. This should be supplemented by verification and testing for
more complete analysis.

* The requirements specification language should provide a means of tracing each require-
ment to its informal expression by the customer as an aid in validation.

Key questions:

(1) Is traceability from informal customer requirements to the requirements specification
supported?

(2) Is tracing from the requirements specification to design or implementation supported?

3.4. Validation

Validation that a specification satisfies the customer's needs is at present an informal
process involving the specifier, the customer, and the requirements specification. Language
support for specification properties, such as readability and traceability, can help in this pro-
cess, as well as support for techniques such as prototyping, scenarios, and specification execu-
tion (e.g., step by step execution of a STATEMATE specification that provides visual
highlighting of the currently active state [Harel et al. 1990]). Verification or testing of pro-
perties, such as timing and safety, provide additional input to the validation process.

Key questions:

(1) Which properties (e.g., readability) related to the language aid in validation?

(2) Which techniques (e.g., prototyping, specification execution) related to the language aid
in validation?

3.5. Tools and Environment

Manual introduction of methods, analyses, and traceability can only provide limited
support. To scale up to production systems ultimately requires well-integrated tool support,
as could be provided by a CASE environment, simply to cope with the amount of data and
its different uses by the people involved in the requirements specification process.

Various quality factors will affect the acceptance of automation in place of manual tech-
niques. Tools and a supporting environment must be cost-effective. Tools should be robust,
easy to learn, and easy to use. Furthermore, simple tools (such as syntax-checking editors)
may suffice when the major concern is with recording the specification rather than extensive
analyses [Place et al. 1990].
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Some basic features of tools and environments that should be integrated with a
specification language and its related method and analyses include the following:

0 The environment should provide a common repository for all requirements and various
useful relationships among different types of information. Special-purpose editors (e.g.,
structured, syntax-directed, graphical) should provide for the efficient and correct entry
of requirements data in multi-user mode.

* Open, nob-proprietary data formats and interfaces should be standardized to promote
interoperability among tools.

" The environment should provide configuration management and version control for the
various work products of the requirements process.

* The organization of the environment and the requirements data should support various
analysis tools.

Key questions:

(1) Are the available tools supporting the language cost-effective, robust, easy to learn, and
easy to use?

(2) Are these tools interoperable with the development environment?

4. Summary

We have developed a set of general evaluation criteria for real-time requirements
specification languages. These criteria cover important properties of a specification (applica-
bility to real-time systems, capturing the conceptual construct, etc.) that should be supported
by a specification language, as well as techniques for analyzing those properties (verification,
traceability, etc.). These general criteria are intended as a guide to the development of more
detailed criteria during actual evaluations of specification languages.

We close by reminding the reader that choice of language plays only a limited role in
the success of a development effort. Although a language may facilitate sound engineering
practices, it is still incumbent on the engineering staff and project management to enforce
those practices.
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GLOSSARY

acceptable Satisfying the customer's "real" requirements for a system. The
customer's requirements may not be the same as those actually
in the requirements specification, since the requirements
specification may not correctly capture the "real" requirements.
Synonym for valid.

abstraction The process and product of choosing only certain attributes
from many that exist of an object or concept. The chosen attri-
butes are important with respect to some goal.

ambiguity Lack of precision (fuzziness), which allows multiple interpreta-
tions of a given aspect of a specification, at least one of which
would lead to an unacceptable implementation.

analysis 1. Process of testing or verifying that a system has certain pro-
perties, for example, those described in its requirements
specification. 2. Process of determining if the requirements in
the specification are consistent with the "real" customer require-
ments (i.e., validation).

completeness Quality that all relevant information for developing an accept-
able implementation has been included in the specifications.
With incomplete specifications it is possible to develop at least
one unacceptable implementation.

conceptual construct The essential properties of a specified system. This represents
what is needed to specify the valid implementations of the
system-no more (overspecification) and no less
(underspecification).

conciseness Compact expression of a concept.

consistency 1. (Internal consistency) Quality of a requirements specification
such that there are no contradictions or conflicts among any of
its parts. 2. (External consistency) Quality of a requirements
specification that there are no contradictions or conflicts
between the specification and another product of the develop-
ment process.

constraint Any decision that limits the set of valid implementations of a
system. These may be hardware constraints (e.g., computer X
must be used), software constraints (e.g., database package D
must be used), or non-functional properties such as performance
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and reliability.

correctness 1. Quality of having consistency between the requirements
specification and any of the other development products (for
example, design specification or the implementation). 2. Quality
of having consistency between the customer's "real" require-
ments for a system and the final system.

customer The person(s) who contracts and pays for the development of a
system. The customer usually (but not necessarily) defines the
system requirements [ANSI/IEEE Std 830-1984].

distributed system A system operating with multiple processors, and one or more of
those processors shares no common memory with the others.
This makes message passing for communication a requirement.

environment 1. (External) environment: The external conditions and inter-
faces under which a system operates. 2. (Software engineering)
environment (SEE): The collection of computers, support
software, procedures and facilities that make the tools and
methodologies used by software developers easily available
[Thayer and Thayer 1990].

formal specification A formal specification is one that has an effective procedure to
tell whether a specification has a particular property of interest
[Gunter 1991]. This type of specification tends to be mathemat-
ically oriented, and it requires more knowledge and experience
than the informal type to understand. Informal explanatory
comments may elucidate formal specifications.

formal verification Verification in which the proof could be recognized mechanically
to be a proof, regardless of whether the proof was developed by
hand or (partially) automatically generated. (Also see
verification.)

hard real-time system System in which deadlines for critical tasks (e.g., start or com-
pletion times) must be met to prevent some catastrophe, or to
reduce the probability that a catastrophe would result.

informal specification A specification that is written largely using natural language
rather than formal mathematical notations. The syntax and
notation may be largely ad hoc, rather than consistent in the
manner of formal specifications. An informal specification may
contain free-form commentary as part of the specification itself
(as contrasted to informal explanatory comments used with for-
mal specifications). An informal specification is amenable to
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very limited machine manipulation.

informal verification Verification in which the proof cannot be recognized mechani-
cally to be a proof. This type of verification tends to be ad hoc
and to be expressed in natural language, or informal notations
(e.g., ones invented ad hoc, or mixtures of various notations).
(Also see verification.)

maintenance The process of fixing errors encountered in a system once it is in
operational use, or changing it to satisfy new requirements.

model An abstraction that includes all essential properties of the pro-
cess or object being modeled, but does not include any irrelevant
properties. Relevance is determined by how the model will be
used. A specification is a model of the system to be developed.

nondeterminism Property that an observer cannot tell which of several behaviors
should be chosen, since more than one is acceptable. It can be a
desirable characteristic in a specification. In addition, however,
repeatability may also be desired in some subset of these cases,
so that once a particular behavior is chosen later in the develop-
ment process, it may be a requirement to use that one alone
wherever this nondeterministic requirement appears [Parnas and
Wang 1989].

notation The means of expressing the structure (i.e., syntax) of a given
language unit (e.g., sentences in English, or propositions in logic)
via the composition of symbols. The notation for expressing
syntax is not the same as the syntax.

overspecify 1. To put extra information into the specification of a software sys-
tem to the extent that it excludes at least one acceptable implemen-
tation (due to the extra information being inconsistent, benIg design
information not appropriate to describing the externally visible
behavior, etc.). 2. To put undesirably redundant information into the
specification of a software system [Place et al. 1990].

parallel system A system with multiple processors that communicate via shared
memory.

precise Well-defined. Precision is a major requirement for automated pro-
cessing.

real-time system Any system that must operate under some form of timing con-
straints. (See soft and hard real-time systems).
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requirements specification-
Product that defines the acceptable implementations for a software
system subject to constraints (which may include performance,
operating, interface, and economic constraints) [Heitmeyer and
McLean 1983, Roman 1985]. These constraints should be minimal so
that no useful implementations are precluded [Zave and Yeh 1981].

semantics The meaning of a construct as opposed to its syntax.

simulation Process of testing important system properties by executing a model
of the proposed system. The model may have artificial (simulated)
components for any of the computer hardware, environment, or
software functionality [Shooman 1983].

soft real-time system A real-time system that has stochastic (rather than deterministic)
timing constraints.

specification Description of the essential properties of an object (system, software,
program, etc.). Specifications may be informal or formal.

specification language Any method providing the basic concepts and relations for expressing
specifications. Specification languages include formal languages as
well as less formal constructs.

syntax The structure of a construct as implied by the rules for composing it
from subcomponents (as opposed to its semantics). The syntax rules
may manifest themselves through different notations.

testing Any process (e.g., regression testing) for establishing confidence in
the truth of some property of a specification, design, implementation,
etc. by checking or executing some subset of the total possible out-
comes. In contrast to verification, testing can never absolutely verify
(definition 1) some property (except exhaustive testing of all possibili-
ties).

traceability Identification and recording of the links between requiremenms and
the manifestation of those requirements in other products of the
software development process (informal customer requirements,
design, implementation, test plans, etc.)

underspecify To specify without enough detail (i.e., incompletely, ambiguously,
etc.) such that the specification admits at least one unacceptable
implementation [Place et al. 1990].
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user Person(s) who interacts directly with a system. Users and customers

are not necessarily the same people [ANSI/IEEE Std 830-19841.

valid Synonym for acceptable.

validation Process of determining that a software system satisfies the
customer's needs. "Am I building the right product IBoehm 1984]?"

verification 1. Process of proving that a specification satisfies some property (for
all situations). 2. Process of determining if products of one phase of
software development satisfy requirements of previous phase. "Am I
building the product right [Boehm 19841?"
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